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Abstract —A method for computing the electrostatic fields and the

capacitance matrix for a multiconductor system in a multiple dielectric

region is presented. The number of con@sctors and the number of dielec-

trics in this analysis are arbitrary. Some of the conductors maybe of finite

volume and others may be infinitesimally thin. The conductors can be

either above a single ground plane or between two parallel ground planes.

The formulation is obtained by using a free-space Green% function in

conjunction with totaf charge on the conductor-to-dielectric interfaces and

polarization charge on the dielectric-to-dielectric interfaces. The solution is

effected by the method of moments using trfattgnkr suhdomains with

piecewke constant expansion functions “and point ‘matcbirtg for testing.

Computed results are given for some finite-length conducting lines, com-

pared to previous resufts obtained by two-dfmensiottaf analysis.
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I. INTRODUCTION

T HE OBJECTIVE of this paper is to compute the

electrostatic fields and the capacitance matrix of arbi-

trarily shaped conductors embedded in multiple dielect@c

regions. The entire system could be situated over a fir@e or

infinite ground plane, or could be between two ground

plbes. This solution is useful for finding equivalent cir-

cuits of microst~p junctions and discontinuities and for

vias connecting conductors located in various dielectric

regions. Some of the conductors may be of finite volume

and others may be infinitesimally ~hin.

Recent advances in integrated circuit technology, such as

VLSI design in the microwave region, necessitate a

sophisticated analysis, design, and construction of trarts-
mission lines to carry signals from one end to the other.

Even though a large volume of literature exists to analyze

ai infinitely long transmission” line, there are very few

satisfactory procedures to solve for the equivalent circuits
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Fig. 1. Multiconductor system embedded in a multilayered dielectric
region above a ground plane.

of junctions and vias connecting conductors located in

various dielectric layers. The basic difference between the

analysis of transmission lines and junctions of lines, vias,

etc., is that for the former case we are solving a two-dimen-

sional problem and, for the latter case, we are solving a

three-dimensional problem. The primary difficulty in solv-

ing three-dimensional problems arises from the lack of an

effective solution procedure to treat arbitrarily shaped

conducting bodies (like microstrip discontinuities and vias)

immersed in several dielectric media. The simpler case of

treating a single, arbitrarily shaped, conducting body im-

mersed in a “homogeneous dielectric medium has been

solved by Rao et al. [1] and in [2]. In this paper, we present

an extension of the solution procedure to treat multiple

finite conductors in the presence of various dielectric media.

The present paper uses a free-space Green’s function in

conjunction with total charge on the conductor-to-dielee

tric interfaces and polarization charge on the dielectric-to-

dielectric interfaces. This approach is similar to the ap-

proach presented in [3] for the two dimensional case. The

free-space Green’s function approach results in a simpler

formulation of the problem, but requires the solution of a

larger matrix equation. This formulation has a theoretical

advantage over those presented in [4]–[8] in that there is no

limit to the number of dielectric layers that can be treated,

but a practical limit is imposed by the speed and the

storage of the computer. Also, using this approach, one can

handle any number of arbitrarily shaped conductors.

II. STATEMENT OF THE PROBLEM

Consider a system of conductors in a multiple dielectric

region above a ground plane as shown in either Fig. 1 or
Fig. 2. The system is of finite volume. An arbitrary number

NC of perfect conductors are embedded in an arbitrary

number Nd of dielectric layers. Some of the conductors

may be of finite cross section. Others may be infinitesi-

mally thin strips that appear as curves. The permittivity of

the jth dielectric is CJ. In Fig. 1, the uppermost dielectric

extends to infinity. In Fig. 2, there is an upper ground

plane.

A lower ground plane is present in both Figs. 1 and 2.

This lower ground plane is taken to be infinite in extent.

Nominally, the upper ground plane and the dielectric

cyd.ct ins
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Fig. 2. Multiconductor transmission system embedded in a multilayered

dielectric region between two ground planes.

layers are also of infinite extent. However, the numerical

solution of Section IV is obtained by considering the upper

ground plane and the dielectric layers to be of finite extent.

The objective is to determine the capacitance matrix of

the multiple conductors embedded in a multiple dielectric

region. The ij th element of the capacitance matrix is the

free charge on the i th conductor when the potential of the

jth conductor is 1 V and the other conductors are grounded.

In [3], the elements of the capacitance matrix are called

coefficients of capacitance. In [9, p. 97], the diagonal

elements of the capacitance matrix are called coefficients

of capacitance, but the off-diagonal elements are called

coefficients of induction.

Once the capacitance and inductance matrices of the

multiple conductor system are known, the equivalent cir-

cuit can be determined. However, in this paper, examples

are presented only for the transmission-line systems. In our

examples, we consider the transmission lines to be of finite

length and sufficiently long so that we can compare our

results with those of the two-dimensional results.

111. ANALYSIS

Consider the capacitance matrix for the problem stated

in the previous section. The ij th element of this matrix is

the free charge on the i th conductor when all conductors

except the jth conductor are grounded and the jth con-

ductor is charged to a potential of 1 V. Hence, the elements

of the capacitance matrix can be determined by relating

the free charge on the conductors to the potentials of the

conductors. The free charge on one of the NC conductors is

the integral of the free charge per unit area over the entire

surface of the conductor. Thus, the elements of the capaci-

tance matrix can easily be determined once a relationship

has been established between the total free charge on the

surfaces of the conductors and the potentials of the con-

ductors.

A total charge of UT per unit area is assumed on the

conductor-to-dielectric interfaces and the Nd —1 dielectric-

to-dielectric interfaces. The conductor-to-dielectric inter-

faces consist of the surfaces of the NC conductors and the

upper ground plane, if present. The jth dielectric-to-dielec-

tric interface is where the dielectric layers C, and Cj+ ~ meet,

provided that no conductors lie on this plane. If conduc-
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tors lie on this surface, then the jth dielectric-to-dielectric

interface is the portion of this surface not occupied by

conductors. On each conductor-to-dielectric interface, the

total charge is the sum of free charge and polarization

charge. On each dielectric-to-dielectric interface, the total

charge is polarization charge.

We discretize each charge density layer into a set of

planar triangular patche$ and approximate the charge den-

sit y to be constant oh a given patch. The triangular patches

to model a layer are chosen primarily because of the

capability of these patches to conform to any geometrical

surface and boundary. Moreover, these patches permit

greater patch densities at the regions where more resolution

is desired and the planar triangular scheme is easily de-

scribed to the computer.

At any point r above the lower ground plane, the

potential V is due to the combination of UT on all the

patches and the image of UT about the lower ground plane.

Hence

[
~(r)= &- i J.,(,’) --.’.l-.-.!-- 1dS’ (1)

Oj=l ~ lr - r’1 Ir– fi’1

where Sj is the surface area of the j th patch. In (l), dS’ is

the differential element of area at r’ on Sj and V is the

image of r’ about the lower ground plane. The first N=

interfaces are the surfaces of the N= conductors. If there is

no upper ground plane, the next Nd – 1 interfaces are the

dielectric-to-dielectric interfaces. If there is an upper ground

plane, the (N= + l)th interface is the surface of this ground

plane, and the next Nd – 1 interfaces are the dielectric-to-

dielectric interfaces. Accordingly

J= J1+J2 (2)

where, in the absence of the upper ground plane

J1 = NC

Jz=Nd–l (3)

and, in the presence of the upper ground plane

JI=NC+l

J2=Nd–1. (4)

It is evident that J1 is the number of conductor-to-tlielec-

tric interfaces and that Jz is the number of dielectric-to-

dielectric interfaces.

The electric field E is given by

J?(r) =- VV(r). (5)

Substituting (1) for V in (5) and assuming that r is not on

any of the patches {S, } so that the v operator may be

taken under the integral sign, we obtain

(6)

obtain the following formula for E, valitl on Sj.

[
~’(r) =& ~1~7-(t)<- r—tr

1
dS ‘

J lr–r’l’ lr– Y13

~nfq(r)

{

r on Si

2C0 ‘
(7)

i=l,2,. ... J.

Here, n is the unit vector normal to S, at r. The side of S,

toward which n points is called the positive side of Si. The

side of S, away from which n points is called the negative

side of S,. In (7), E+(r) is the electric field on the pcmi-

tive side of S, and E-(r) is the electric field on the

negative side of Si.

On each conductor-to-dielectric interface, the potential is

constant. Denciting the potential on the i th conductor-to-

dielectric interface by K, we obtain

{

r on S,
V(r)=~, i&l,2,. . . ,J1”

(8)

If the upp& ground plane is present, then ~. is zero for

i = J1. Substitution of (1) for V(r) in (8) yields

(r on Si

i=l,2,. ... J1”

(9)

The displacement vector is called D(r). The normal

component of D(r) is continuous across each dielectric-to-

dielectric interface. Since D(r) is the product of permittiv-

ity with electric field, it follows that

ci_J,E+ (r)”n=cz+l_J,& (r)”n,

(r on Si

i= J1+l, J1+2, ”.”, J
(lo)

where n is the outward-pointing unit vector. In (10), (,-~,

and E+(r) are, respectively, the permittivity and electric

field on the side of S, into which n points. Moreover,

~i + ~_Jl and E– (r) are, respectively, the permittivity and

electric field on the other side of Si. Substitution of (7) for

E * (r) in (10) yields, after division by ((i-j, – Ci+ ~_Jl)

j:, ~“’(r’)[~- r—fi’

1
.iidS’= O,

J lr– F13

(r on Si

i= J,+l, J, +2,..”, J“ (11)Taking the limit of (6) as r approaches the interface Si, we \- .
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Equations (9) and (11) are a set of J integral equations

in the unknown total charge UT on the interfaces whose

patches are {~j, j =1,2,. . . . J}. In Section IV, the method

of moments wdl be used to obtain an approximate numeri-

cal solution for u,- in terms of {~., i =1,2,. . . . Nc }. Since

(9) and (11) are linear, this solution is of the form

.,= ; .$o~ (12)
icl

where u!) is the solution which would result if the poten-

tial ~. was unity and all other potentials were zero.

As stated earlier, some of the conductors may be of

finite cross section, and others may be infinitesimzllly thin.

On the i th triangular patch on a conductor

uT=@.n (13)

aF=cE. n (14)

where E is the electric field just outside the patch, n is the

unit normal vector which points outward from the surface

of the conductor, c is the permittivity just outside the

conductor, and OF is the free charge per unit area on the

conductor. Equations (13) and (14) imply that

o,(r) = $L,(r) (15)

on the surface of the i th conductor, provided that this

conductor is of finite cross section.

If the i th conductor is infinitesimally thin, then the free

charge UF on the surface of the i th conductor is given by

LTF= (e’E+- c-E-).n (16)

where n is a unit vector normal to the conductor. The side

of the conductor toward which n points is called the

positive side. The side of the conductor away from which n

points is called the negative side. In (16), E+ and E+ are,

respectively, the permittivit y and electric field on the posi-

tive side of the conductor. Moreover, c– and E– are,

respectively, the permittivity and electric field on the

negative side of the conductor. Substitution of (7) for E *
in (16) leads to

on the surface of the i th conductor provided that this

conductor is an infinitesimally thin conductor.

Regardless of whether the i th conductor has finite cross

section or is infinitesimally thin, the free charge Q, on it is

given by

Q,= ~u~(r) ds, i=l,2,. ... N
c

(18)

where dS is the differential area at r on patch Si. In view

of (12) with index i replaced by j, substitution of (15) or

(17) for UF in (18) gives

Qi= ? czJJj, i=l,2,. ... NC (19)
j-l

where, if the i th conductor is of finite cross section

c(r)u$)(r) dS,cij=~T (20)

If the i th conductor is infinitesimally thin, then

(c+(r) +c-(r) ~,,
Cij= j z,

c+(r) –c-(r)
UT (r)+

s, o 47rco

[
~ J U$’)(r’) ‘-r’ r-~’ H.ndS’ dS.

~=1 Sk lr-r’13 lr–~’13

(21)

In obtaining (21), the index j in (17) was replaced by k in

order to avoid confusion with the index j which appears in

C,J. The coefficient C,j is the ijth element of the capaci-

tance matrix.

IV. DEVELOPMENT OF THE MOMENT SOLUTION

In this section, the integral equations (9) and (11) are

solved numerically for UT by means of the method of

moments [11].

A solution UT to ($ and (11) is sought in the form

uT(r) = ~ uTnPn(r) (22)
~=1

where {P.(r), n ‘1,2, ” “ “, N} are pulse expansion func-

tions given by

(P.(r) = ~’
r in the triangular patch S.

(23)
? otherwise

Moreover, { u=., n = 1,2,. ... N } are constants to be de-

termined. The upper ground plane and dielectric layers are

now truncated at a finite distance so that only pulse

functions of finite domain are needed. Given an arbitrary

point on the truncated {~, j = 1,2,. ... J }, there is an

integer m such that, at this point

Pm=l

Pa= o, ~=~,z,... ,m–l, m+l,. . . , N. (24)

Itfollows from (23) and (24) that

UT = UT* (25)
at this point.

Let {P~(r), n=l,2,. -., N1 } be the pulses on {S,, j =

1,2,. . . ,Jl}, and let {P~(r), n= Nl+l, Nl+2,. .0, N} be

the pulses on {~j, j = J1 + 1, J1 + 2,. ... J}. Moreover, let

rm be the centroid of the domain of Pm(r) for m =
1,2,.. .,N.

Substituting (22) for u= in (9) and then enforcing (9) at

r=rm for m=l,2,. ... N1, we obtain

E Zmno,n= q, m=l,2,. ... N1 (26)
~=1
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where i is such that r~ is on S,, and

1

–J [

1 1— —

]{

ds, ‘=~2”””,, N1
‘m.= 4m~0 A& lr~ – r’1

lr~-f’l “ n=l:2:”’”, N

(27)

where AS. is the triangular domain of P.(r).

Substituting (22) for UT in (11) and then enforcing (11)

at r=rm form= Nl+l, Nl+2,. ... N,weobttin

; Zmnu=n = o, m= N1+l, N1+2,.
~=1

where m # n, and

1

/[

rm —r’ rm — p
z =—

‘n 47r60 A~n l~m– r’13 – I.ndS’,
Irm - fi’13

(m= Nl+l, Nl +2,”

n=l,2, ””*, N.

In (28), Z~~ is given b’,

N (28)

N (29)

m= Nl+l, Nl +2,..., N. (30)

In (30), i is such that rm is on Si. If m #n, but if rm and P.

are on the same dielectric-to-dielectric interface, then (29)

reduces to

z~.=-&L.n(l::;;3 )”nds’ (31)

Numerical methods for calculating Z~. are given later in

this section. After Z~. has been calculated for m =1,2.”’.

N and n=l,2,. ””, N, (26) and (28) combine to form N

simultaneous equations in the N unknowns { o~~, n =

1,2,. . . , N}. These simultaneous equations can then be

solved for {u~., n=l,2, ”.”, N} in terms of {K, i=

1,2,... , NC}. The solution is of the form

u,n = f o$;~. (32)
icl

where {u~~, n=l,2, ”””, N} is the solution which would

result if ~ were unity and all other V‘s were zero. Sub-

stituting (32) and (22) and comparing the result with (12),

we obtain

u!)(r)= f u(l)PH(r). (33)
~=1

The elements of the capacitance matrix can be calculated

by replacing i by j in (33) and then substituting the

resulting expression for o$~)(r) in (20) and (21). The in-

tegral with respect to S in (21) is approximated by sam-

pling the integrand at r = rm for all values of m for which

r~ is on Si. At r = rm, the integrals with respect to S‘ in

4“

Fig. 3. Geometry associated with observation point and triangular source

(21) are similar to the integrals appearing in expressions

(29) and (30) for Z~..

To facilitate calculation of Zw., ASH is approximated by

triangular patches as shown in Fig. 3. Each of the integrals

in (27) has been evaluated analytically over the triangular-

shaped regions. The details are given in [13], [14].

The integrations for the terms in (29), however, have

been done numerically utilizing the techniques described in

[12].

V. NUMERICAL EXAMPLES

A computer program has been written for the special

case where all conductors are of finite cross section and for

the case where all conductors are infinitesimally thin. In all

the numerical computations, the conductors and the dielec-

tric-to-dielectric interfaces have a finite area. These pro-

grams [13], [14] have been used to obtain the numerical

results presented in this section.

In our examples, we treat only finite-length transmission

lines and compare our results with the two-dimensional

case. We do this not because of limitations introduced. by

the computer programs but because results for two-dimen-

sional examples are readily available. In order to find the

inductance matrix for our computations of finite-length

multiconductor transmission line, we recompute the capa-

citance matrix [CO] with no dielectric media and then use

the relationship

[L]=j[co]-l (34)

where u is the velocity of light in free space. The above

relation is exact for the two-dimensional case [3], whereas

it provides a simple approximate procedure for the three-

dimensional case (finite-length conductors).

Example 1

Consider the case of a commonly used microstrip trans-

mission line with two rectangular conducting cylinders

over a dielectric slab on an infinitely long perfect ground

plane as shown in Fig. 4. The relative permittivity c, of the

dielectric slab is 2.0. The two-dimensional solution for this
problem was reported by Weeks [17]. For the three-dimen-
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Fig. 4. Coupled transmission line formed by two conductors on

dielectric substrate over a ground plane.

TABLE I

CAPACITANCE AND INDUCTANCE MATRICES FOR THE

TWO-CONDUCTOR TRANSMISSION LIrw

Our Result Weeks [17]

C(l,l)

= C(2,2) 9.189 x 10-1’ F/m 9.224 X 10-11 Ffm

C(1,2)

= C(2,1) -7,019 x 10-’2 F/m -8.5o4 x 10-12 F/m

L(l,l)

= L(2,2) 0.1855 X 10-6
H/m 0.1982 X 10

-6
H/m

L(1,2)

= L(2,1) 0.2361 X 10
-7 0.2980 X 10

-6 H/m

sional problem, we take each conductor to be 20.0 m long

and each is modeled by utilizing 40 triangular patches. The

two dielectric layers at the end of the striplines are each 20

m long and 6.0 m wide and are modeled by 16 patches

each. The dielectric section between the two conductors is

20.0 x2.0 m and is modeled by eight triangular patches.

Table I shows the values of Cij and Lij obtained from our

solution compared with those taken from [17]. Satisfactory

agreement is evident in these two solutions.

Example 2

Consider the case of a microstrip tramw-nission line as

shown in Fig. 5. Here, we have a circular conductor and
two rectangular conductors embedded in three dielectric

regions of relative permittivity 6.8, 4.5, and 1.0, respec-

tively. The circular conductor is 2 m long and is modeled

by using 80 triangular patches. The rectangular conductors

are each 2 m long and are modeled utilizing 40 triangular

patches. Each dielectric layer is 2X 2 m and is modeled by

32 triangular patches. The entire structure is situated over

an infinitely long perfect ground plane. This example il-

lustrates the generality of the solution procedure to handle

various geometries. Table II shows the capacitance matrix

obtained from our solution compared with the two-dimen-

sional analysis presented in [3].

Y

t
-1.0 10

x

Fig. 5. Three-conductor transmission line over a ground plane.

TABLE II
CAPACITANCE MATRIX FOR THREE-CONDUCTOR TRANSMISSION

LINE

Capacitance Two Dimens io~al
F/m Our Result Analysis [3]

C(l,l) 0.3984 X 10-9 0.3523 X 10-9

C(1,2) -0.6659 X 10-10 -0.6825 x 10-’0

C(1,3) -0.6730 x 10-11 -0.7196 x 10-11

C(2,1) -0.6970 X 10
-10

-0.6825 x 10-10

C(2,2) 0.1399 x 10-9 0.1244 X 10-9

c(2,3) -0.1221 x 10
-lo -0.1300 x 10-lo

C(3,1) -0.7649 x 10-” -0.7196 X 10-11

c(3,2) -0.1290 X 10-10 -0.1300 x 10-10

C(3,3) 0.3815 x 10-lo 0.3340 x 10-10

Example 3

Consider the case of two rectangular microstrip lines

situated between two perfectly conducting ground planes.

The lower ground plane is considered infinitely long,

whereas the upper ground plane is considered to be of

finite length of dimension 20x 20 m. This geometry is

shown in Fig. 6. Each rectangular conductor is modeled by

40 triangular patches and is 20 m long. The upper ground

plane is considered to be a dielectric of c,= 99, so as to

approximate the case of a ground plane. This layer has

been modeled utilizing 72 triangular patches. Table III

shows a comparison of the results computed with the

present program and that of Weeks [17] and Wei et al. [3].

Note that the results of Weeks are for conductors between

two perfectly conducting infinitely long ground planes,

whereas those of Wei et al. [3] are for a finite dielectric

layer (c, = 99) on top. Our results are for a three-dimen-

sional case, whereas the other two are for a two-dimen-

sional case. Again, the computed results appear reasonable.

Example 4

Consider the case of a commonly used microstrip trans-

mission line with two infinitely thin strips over a dielectric

slab on an infinitely long perfectly conducting ground

plane as shown in Fig. 7. The relative permittivity c, of the

dielectric slab is 9.6. The two-dimensional solution for this
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Fig. 6. Coupled rnicrostrips between parallel conducting planes.

TABLE III
COMPARISON OF RSSULTS FOR FIG. 6

Cll

C12

C21

C22

E@d.!zJ Wei et al [31

0.6307 x 10-’0 0,6233 x 10-’0

-0.5866 x 10-1’ -0.5931 7. 10-11

-0.5866 x 10-” -0.5931 x 10-’1

0.6307 x 10
-10

0.6233 x 10-lo

-i

our Pro&ram

0.6509 x 10-’0

-J
-0.5777 x 10-’1

-0.5783 x 10”11

0.6516 x 10-’0

O.llm 6X=%6

7’/ / I / / / / J / / ) ! [ / /

Fig. 7. A parallel strip transmission line over a dielectric slab mounted

on a ground plane.

problem was reported by Bryant and Weiss [19]. For the

three-dimensional solution of this problem, we take each

strip to be 1.0 m long and model by utilizing 16 triangular’

patches. The two dielectric layers at the end of the strip-

lines are each 10 m long and 0.3 m wide and are modeled

by 16 triangular patches each. The dielectric section be-

tween the two conductors is 0.04 m wide and 1.0 m long,

and also modeled by 16 triangular patches. The even-mode

and odd-mode impedances 2., and ZOO for our case are
140.25 and 80.40 Q, respectively, whereas the two-dimen-

sional solution yields 141.2 and 77.25 Q, respectively [19].
Again, satisfactory agreement is evident in these two solu-

tions.

VI. DISCUSSION AND CONCLUSION

The integral equations (9) and (11) for the total charge at
the surfaces of conductors embedded in multiple dielectric,

regions and on the dielectric-to-dielectric interfaces are

simple in concept. The solution obtained by the method of

moments using a piecewise constant for expansion and

point matching for testing is also simple. Experience has

shown that this type of solution is both versatile and

accurate. Improvement in the rate of convergence might be

obtained by using better-behaved functions for expansion

and testing, but at the, cost of considerable complication.

The solution presented is valid for an arbitrary number

of conductors of finite volume embedded in an arbitrary

number of dielectrics. The solution is also valid, even if the

conductors become of zero thickness.

For the numerical examples, we have compared the

inductance and capacitance matrices of a finite-length

transmission line with that of an infinitely long transmis-

sion line. However, this analysis is more general and can be

used to compute equivalent circuits of tnicrostrip Junctions

and discontinuities and for vias connecting signal conduc-

tors.

Even though the method is designed for general geotrte-

tries, its application seems rather restricted for complex

configurations, due to solutions of large matrix equations.

However, if one applied the conjugate gradient method

[20], [21] directly on the operator equations (9) and (1’1),
then one needs only 5N storage locations as opposed to N 2

for conventional matrix methods.
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