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Abstract —A method for computing the electrostatic fields and the

capacitance matrix for a multiconductor system in a multiple dielectric
region is presented. The number of conductors and the number of dielec-
trics in this analysis are arbitrary. Some of the conductors may be of finite
volume and others may be infinitesimally thin. The conductors can be
either above a single ground plane or between two parallel ground planes.
The formulation is obtained by using a free-space Green’s function in
conjunction with total charge on the conductor-to-dielectric interfaces and
polarization charge on the dlelecmc-to-dlelecmc interfaces. The solution is
effected by the method of moments using triangular subdomains with
piecewise constant expansion functions ‘and point ‘matching for testing.
Computed results are given for some finite-length conducting lines, com-
pared to previous results obtained by two-dimensional analysis.
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- 1. INTRODUCTION

HE OBJECTIVE of this paper is to compute the

electrostatic fields and the capacitance matrix of arbi-
trarily shaped conductors embedded in multiple dielectric
regions. The entire system could be situated over a finite or
infinite ground plane, or could be between two ground
planes. This solution is useful for finding equivalent cir-
cuits of microstrip junctions and discontinuities and for
vias connecting conductors located in various dielectric
regions. Some of the conductors may be of finite volume

and others may be infinitesimally thin.

Recent advances in integrated circuit technology, such as
VLSI design in the microwave region, necessitate a
sophisticated analysis, design, and construction of trans-
mission lines to carry signals from one end to the other.
Even though a large volume of literature exists to analyze
an infinitely long transmission line, there are very few
satisfactory procedures to solve for the equivalent circuits
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Fig. 1. Multiconductor system embedded in a multilayered dielectric

region above a ground plane.

of junctions and vias connecting conductors located in
various dielectric layers. The basic difference between the
analysis of transmission lines and junctions of lines, vias,
etc., is that for the former case we are solving a two-dimen-
sional problem and, for the latter case, we are solving a
three-dimensional problem. The primary difficulty in solv-
ing three-dimensional problems arises from the lack of an
effective solution procedure to treat arbitrarily shaped
conducting bodies (like microstrip discontinuities and vias)
immersed in several dielectric media. The simpler case of
treating a single, arbitrarily shaped, conducting body im-
mersed in a homogeneous dielectric medium has been
solved by Rao et al. [1] and in [2]. In this paper, we present
an extension of the solution procedure to treat multiple
finite conductors in the presence of various dielectric media.
The present paper uses a free-space Green’s function in
conjunction with total charge on the conductor-to-dielec-
tric interfaces and polarization charge on the dielectric-to-
dielectric interfaces. This approach is similar to the ap-
proach presented in [3] for the two dimensional case. The
free-space Green’s function approach results in a simpler
formulation of the problem, but requires the solution of a
larger matrix equation. This formulation has a theoretical
advantage over those presented in [4]—[8] in that there is no
limit to the number of dielectric layers that can be treated,
but a practical limit is imposed by the speed and the
storage of the computer. Also, using this approach, one can
handle any number of arbitrarily shaped conductors.

II. STATEMENT OF THE PROBLEM

Consider a system of conductors in a multiple dielectric
region above a ground plane as shown in either Fig. 1 or
Fig. 2. The system is of finite volume. An arbitrary number
N, of perfect conductors are embedded in an arbitrary
number N, of dielectric layers. Some of the conductors
may be of finite cross section. Others may be infinitesi-
mally thin strips that appear as curves. The permittivity of
the jth dielectric is ¢,. In Fig. 1, the uppermost dielectric
extends to infinity. In Fig. 2, there is an upper ground
plane.

A lower ground plane is present in both Figs. 1 and 2.
This lower ground plane is taken to be infinite in extent.
Nominally, the upper ground plane and the dielectric
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Fig. 2. Multiconductor transmission system embedded in a multilayered
dielectric region between two ground planes.

layers are also of infinite extent. However, the numerical
solution of Section IV is obtained by considering the upper
ground plane and the dielectric layers to be of finite extent.

The objective is to determine the capacitance matrix of
the multiple conductors embedded in a multiple dielectric
region. The jjth element of the capacitance matrix is the
free charge on the ith conductor when the potential of the
Jth conductor is 1 V and the other conductors are grounded.
In [3], the elements of the capacitance matrix are called
coefficients of capacitance. In [9, p. 97], the diagonal
elements of the capacitance matrix are called coefficients
of capacitance, but the off-diagonal elements are called
coefficients of induction.

Once the capacitance and inductance matrices of the
multiple conductor system are known, the equivalent cir-
cuit can be determined. However, in this paper, examples
are presented only for the transmission-line systems. In our
examples, we consider the transmission lines to be of finite
length and sufficiently long so that we can compare our
results with those of the two-dimensional results.

111

Consider the capacitance matrix for the problem stated
in the previous section. The ijth element of this matrix is
the free charge on the ith conductor when all conductors
except the jth conductor are grounded and the jth con-
ductor is charged to a potential of 1 V. Hence, the elements
of the capacitance matrix can be determined by relating
the free charge on the conductors to the potentials of the
conductors. The free charge on one of the N, conductors is
the integral of the free charge per unit area over the entire
surface of the conductor. Thus, the elements of the capaci-
tance matrix can easily be determined once a relationship
has been established between the total free charge on the
surfaces of the conductors and the potentials of the con-
ductors.

A total charge of o, per unit area is assumed on the
conductor-to-dielectric interfaces and the N, —1 dielectric-
to-dielectric interfaces, The conductor-to-dielectric inter-
faces consist of the surfaces of the N, conductors and the
upper ground plane, if present. The jth dielectric-to-dielec-
tric interface is where the dielectric layers ¢, and €, ; meet,
provided that no conductors lie on this plane. If conduc-

ANALYSIS



RAO ef al.: ELECTROSTATIC FIELD OF CONDUCTING BODIES IN MULTIPLE DIELECTRIC MEDIA

tors lie on this surface, then the jth dielectric-to-dielectric
interface is the portion of this surface not occupied by

conductors. On each conductor-to-dielectric interface, the

total charge is the sum of free charge and polarization
charge. On each dielectric-to-dielectric interface, the total
charge is polarization charge.

We discretize each charge density layer into a set of
planar triangular patches and approximate the charge den-
sity to be constant on a given patch. The triangular patches
to model a layer are chosen primarily because of the
capability of these patches to conform to any geometrical
surface and boundary. Moreover, these patches permit
greater patch densities at the regions where more resolution
is desired and the planar triangular scheme is easily de-
scribed to the computer.

At any point r above the lower ground plane, the
potential V" is due to the combination of o, on all the
patches and the image of ¢, about the lower ground plane.
Hence

V(r)=

fre = o) A

where S; is the surface area of the jth patch. In (1), dS” is
the differential element of area at r".on S; and #’ is the
image of r’ about the lower ground plane. The first N,
interfaces are the surfaces of the N, conductors. If there is
no upper ground plane, the next N, —1 interfaces are the
dielectric-to-dielectric interfaces. If there is an upper ground
plane, the (N, + Dth interface is the surface of this ground
plane, and the next N, —1 interfaces are the dielectric-to-
dielectric interfaces. Accordingly

]dS’ )

J=J+J, (2)
where, in the absence of the upper ground plane

Ji=N,

Jp=N,~1 (3)
and, in the presence of the upper ground plane

Ji=N.+1

J,=N,-1. (4)

It is evident that J; is the number of conductor-to-dielec-
tric interfaces and that J, is the number of dielectric-to-
dielectric interfaces.

The electric field E is given by

E(r)=-vV(r). (5)

Substituting (1) for V in (5) and assuming that » is not on
any of the patches {S,} so that the ¥ operator may be
taken under the integral sign, we obtain

1 < N r—p ,
E(r)= dme, jgl fsjoT(r )[|r— r)? - "|3]ds )

|r— 7
(6)

Taking the limit of (6) as r approaches the interface S;, we
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obtain the following formula for E, valid on §;.

—-r r—# ,
.E Jyrt) [ —rp |r—f'|3}ds

orp(r) {i-on S,
tn )
2:0 i=1,2,--+,J

E*(r)=

4 e,

()

Here, n is the unit vector normal to S, at r. The side of S,
toward which n points is called the positive side of S;. The
side of S, away from which n points is called the negative
side of S,. In (7), E*(r) is the electric field on the posi-
tive side of S, and E~(r) is the electric field on the
negative side of S,.

On each conductor-to-dielectric interface, the potential is
constant. Denoting the potential on the ith conductor-to-
dielectric interface by ¥V, we obtain

ron S, .
v(r)= {i=1’2,...,Jl' (8)
If the upper ground plane is present, then V, is zero for
i = J;. Substitution of (1) for V(r) in (8) yields
as’'=V,
47reoj 1,/ or(r )[| ,_;./|]
ron S,
i=1,2,---,J;

(9)

The displacement vector is called D(r). The normal
component of D(r) is continuous across each dielectric-to-
dielectric interface. Since D(r) is the product of permittiv-
ity with electric field, it follows that

JE+(") €1 JE (r)n
ron S
{i=Jl+1,Jl+2,---,J (10)

where n is the outward-pointing unit vector. In (10), €,
and E™*(r) are, respectively, the permittivity and electric
field on the side of S, into which n points. Moreover,
€,+1-5, and E7(r) are, respectively, the permittivity and
electric field on the other side of S,. Substitution of (7) for
E *(r) in (10) yields, after division by (e, imj — €iv1-7)

(fi—.l1 + ei+1—J,)

2‘o(€i—11— €

471’6

) or(r) + 7

i+l

J AL .
r—r r—r
o - adS’'=0,
)y f +(r )[ 7 |r—f'|3]

(1)

ron S;
i=n+1,J+2,---,J°



1444

Equations (9) and (11) are a set of J integral equations
in the unknown total charge o, on the interfaces whose
patches are {S;, j=1,2,- -, J }. In Section IV, the method
of moments will be used to obtain an approximate numeri-
cal solution for o, in terms of {V,,i=1,2,--- N_}. Since
(9) and (11) are linear, this solution is of the form

(12)

where o is the solution which would result if the poten-
tial V; was unity and all other potentials were zero.

As stated earlier, some of the conductors may be of
finite cross section, and others may be infinitesimally thin.
On the ith triangular patch on a conductor

Ne
or= 2. oV,
i=1

(13)
(14)
where E is the electric field just outside the patch, n is the
unit normal vector which points outward from the surface
of the conductor, ¢ is the permittivity just outside the
conductor, and o is the free charge per unit area on the
conductor. Equations (13) and (14) imply that

or=¢,E-n

opr=¢E-n

(

o) (15)

on the surface of the ith conductor, provided that this
conductor is of finite cross section.

If the /th conductor is infinitesimally thin, then the free
charge o on the surface of the ith conductor is given by

or=(e"ET"—¢ E )n (16)

where n is a unit vector normal to the conductor. The side
of the conductor toward which n points is called the
positive side. The side of the conductor away from which n
points is called the negative side. In (16), e* and E™ are,
respectively, the permittivity and electric field on the posi-
tive side of the conductor. Moreover, ¢~ and E~ are,
respectively, the permittivity and electric field on the
negative side of the conductor. Substitution of (7) for E*
in (16) leads to

op(r)=

or(r) = SRy L)

J ’ 87
Z/OT(V’)[ r—r r—r
Jj=1 S/ I -

— -ndS (17
r—r)? r i"|3] (17)
on the surface of the ith conductor provided that this
conductor is an infinitesimally thin conductor.

Regardless of whether the ith conductor has finite cross
section or is infinitesimally thin, the free charge Q, on it is
given by

Q,=fop(r)dS, i=1,2,---, N, (18)
s,

where dS is the differential area at r on patch S,. In view
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of (12) with index i replaced by j, substitution of (15) or
(17) for o, in (18) gives

NC
Q=X CJWV, i=12,---,N, (19)
j=1

where, if the ith conductor is of finite cross section

_relr) o,
Cij_'[g, € Oy (’)dS-

(20)
If the ith conductor is infinitesimally thin, then

Gy [ Dy, SO0

~

N r—# ,
> fo}j)(r)[ A,P}-ndS}dS.

k=175 Ir—r |r—#
(21)

In obtaining (21), the index j in (17) was replaced by k in
order to avoid confusion with the index j which appears in
C,,- The coefficient C,; is the ijth element of the capaci-
tance matrix.

IV. DEVELOPMENT OF THE MOMENT SOLUTION

In this section, the integral equations (9) and (11) are
solved numerically for o, by means of the method of
moments [11].

A solution o, to (9) and (11) is sought in the form

N
or(r)= T apP,(r) (22)
n=1
where {P,(r),n=1,2,---, N} are pulse expansion func-
tions given by

B(r)={

Moreover, {0,,,n=1,2,--+, N} are constants to be de-
termined. The upper ground plane and dielectric layers are
now truncated at a finite distance so that only pulse
functions of finite domain are needed. Given an arbitrary
point on the truncated {S,7=12,---,J}, there is an
integer m such that, at this point

P =1

P, =0, n=1,2,---,m—-1,m+1,---,N. (24)
It follows from (23) and (24) that

O = Oy, (25)

1, r in the triangular patch S, (23)
0, otherwise )

at this point.

Let {P,(r),n=1,2,--+, Ny} be the pulses on (S, j=
1,2,---,J;}, and let {P,(r),n=N;+1,N,+2,---,N) be
the pulses on {Sj, Jj=J4+1,J,+2,---,J}. Moreover, let
r, be the centroid of the domain of P, (r) for m=
1,2,---, N.

Substituting (22) for o in (9) and then enforcing (9) at
r=r, for m=1,2,---, N;, we obtain

N
Z ZmnoTn=V;’ m=172"“’N1 (26)
n=1
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where i is such that r,, is on S, and

Zmn= 1 f 1 - 1 dS,-{m=1’2’..."N1
dmegIns ||, —r| |r,— ¥ n=1,2,-- N

(27)

where AS, is the triangular domain of P (r).
Substituting (22) for ¢, in (11) and then enforcing (11)
at r=r, for m=N,+1, N, +2,---, N, we obtain

N
Y Z,.0m=0, m=N;+1,N,+2,---,N (28)
n=1

where m # n, and
1 r,—r r,—#F
Z,,= = - -ndS’,
” 4vreofAs"[|rm—r'|3 |rm~i"|3]
{m=N1+1,N1+2,---,N
n=1,2,--+,N.
In (28), Z,,,, is given by |

€-nt €41y 1 r,—r ,
z,, = +3 f — | -nds
2e0(€; f—€re1-1,) M€ JAS,\ |1, — 7]
1 r,—#
- 4 ./ - ~n3 .ndS,’
T€o JAs,\ |1, — F

m=N,+1,N,+2,---, N.

(30)
In (30), i is such that r,, is on S,. If m # n, butif r, and P,

are on the same dielectric-to-dielectric interface, then (29)
reduces to

1 r,—
Z,,=- - -ndS’. 31
4me, '[As,,( |, —#? ) (31)

Numerical methods for calculating Z,,, are given later in
this section. After Z,,, has been calculated for m=1,2---
N and n=1,2,--+, N, (26) and (28) combine to form N
simultaneous equations in the N unknowns {o;,n=
1,2,- -+, N}. These simultaneous equations can then be
solved for {o;,,n=12,---,N} in terms of {V,i=
1,2,---, N,}. The solution is of the form

N,

Orn= E U;'lr?l/t
i=1

(32)

where {0{),n=1,2,--+, N} is the solution which would
result if ¥V, were unity and all other V’s were zero. Sub-
stituting (32) and (22) and comparing the result with (12),
we obtain

N
oP(r)= Y WP, (r).

n=1

(33)

The elements of the capacitance matrix can be calculated
by replacing i by j in (33) and then substituting the
resulting expression for ¢$’(r) in (20) and (21). The in-
tegral with respect to S in (21) is approximated by sam-
pling the integrand at r = r,, for all values of m for which

r, is on S;. At r=r,, the integrals with respect to S’ in
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Fig. 3. Geometry associated with observation point and triangular source

region.

(21) are similar to the integrals appearing in expressions
(29) and (30) for Z,,,.

To facilitate calculation of Z,,,, AS, is approximated by
triangular patches as shown in Fig. 3. Each of the integrals
in (27) has been evaluated analytically over the triangular-
shaped regions. The details are given in [13], [14].

The integrations for the terms in (29), however, have
been done numerically utilizing the techniques described in
[12].

V. NUMERICAL EXAMPLES

A computer program has been written for the special
case where all conductors are of finite cross section and for
the case where all conductors are infinitesimally thin. In all
the numerical computations, the conductors and the dielec-
tric-to-dielectric interfaces have a finite area. These pro-
grams [13], {14] have been used to obtain the numerical
results presented in this section.

In our examples, we treat only finite-length transmission
lines and compare our results with the two-dimensional
case. We do this not because of limitations introduced by
the computer programs but because results for two-dimen-
sional examples are readily available. In order to find the
inductance matrix for our computations of finite-length
multiconductor transmission line, we recompute the capa-
citance matrix [C,] with no dielectric media and then use
the relationship

1

BEEICY

(34)

where v is the velocity of light in free space. The above
relation is exact for the two-dimensional case [3], whereas
it provides a simple approximate procedure for the three-
dimensional case (finite-length conductors).

Example 1

Consider the case of a commonly used microstrip trans-
mission line with two rectangular conducting cylinders
over a dielectric slab on an infinitely long perfect ground
plane as shown in Fig. 4. The relative permittivity ¢, of the
dielectric slab is 2.0. The two-dimensional solution for this
problem was reported by Weeks [17]. For the three-dimen-
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Fig. 4. Coupled transmission line formed by two conductors on
dielectric substrate over a ground plane.

TABLE I
CAPACITANCE AND INDUCTANCE MATRICES FOR THE
Two-CONDUCTOR TRANSMISSION LINE
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Fig. 5. Three-conductor transmission line over a ground plane.

TABLE II
Our Result weeks [17] CAPACITANCE MATRIX FOR THREE-CONDUCTOR TRANSMISSION
Ling
c(l,1) Capacitance Two Dimensional
11 11 F/m Our Result Analysis [3
= ¢(2,2) 9.189 x 107 F/m 9.224 x 10 F/m
e(1,1) 0.3984 x 107° 0.3523 x 1070
L2 c(1,2) -0.6659 x 1070 -0.6825 x 10710
,
-11 11
- - (1,3 -0.6730 x 10 -0.7196 x 10
- c(2,1) ~7,019 x 10712 ¥/m -8.504 x 1072 F/m L3 N
€2, 1) -0.6970 x 10710 ~0.6825 x 10°
c(2,2) 0.1399 x 107 0.1244 x 1070
M 10 -10
- - 2 -0.1221 x 10~ -0.1300 x 10
- L(2,2) 0.1855 x 10°° w/m 0.1982 x 1075 u/m €2, x .
e, -0.7649 x 10711 -0.7196 x 10~
¢(3,2) ~0.1290 x 1010 ~0.1300 x 10710
KL 10 10
- - 0.3815 x 10~ 0.3340 x 10
= 1(2,1) 0.2361 x 1077 0.2980 x 1075 H/m €3, x
Example 3

sional problem, we take each conductor to be 20.0 m long
and each is modeled by utilizing 40 triangular patches. The
two dielectric layers at the end of the striplines are each 20
m long and 6.0 m wide and are modeled by 16 patches
each. The dielectric section between the two conductors is
20.0X2.0 m and is modeled by eight triangular patches.
Table I shows the values of C,; and L,; obtained from our
solution compared with those taken from [17]. Satisfactory
agreement is evident in these two solutions.

Example 2

Consider the case of a microstrip transmission line as
shown in Fig. 5. Here, we have a circular conductor and
two rectangular conductors embedded in three dielectric
regions of relative permittivity 6.8, 4.5, and 1.0, respec-
tively. The circular conductor is 2 m long and is modeled
by using 80 triangular patches. The rectangular conductors
are each 2 m long and are modeled utilizing 40 triangular
patches. Each dielectric layer is 2X2 m and is modeled by
32 triangular patches. The entire structure is situated over
an infinitely long perfect ground plane. This example il-
lustrates the generality of the solution procedure to handle
various geometries. Table II shows the capacitance matrix
obtained from our solution compared with the two-dimen-
sional analysis presented in [3].

Consider the case of two rectangular microstrip lines
situated between two perfectly conducting ground planes.
The lower ground plane is considered infinitely long,
whereas the upper ground plane is considered to be of
finite length of dimension 20X20 m. This geometry is
shown in Fig. 6. Each rectangular conductor is modeled by
40 triangular patches and is 20 m long. The upper ground
plane is considered to be a dielectric of €, =99, so as to
approximate the case of a ground plane. This layer has
been modeled utilizing 72 triangular patches. Table III
shows a comparison of the results computed with the
present program and that of Weeks [17] and Wei et al. [3].
Note that the results of Weeks are for conductors between
two perfectly conducting infinitely long ground planes,
whereas those of Wei er al. [3] are for a finite dielectric
layer (e,=99) on top. Our results are for a three-dimen-
sional case, whereas the other two are for a two-dimen-
sional case. Again, the computed results appear reasonable.

Example 4

Consider the case of a commonly used microstrip trans-
mission line with two infinitely thin strips over a dielectric
slab on an infinitely long perfectly conducting ground
plane as shown in Fig. 7. The relative permittivity ¢, of the
dielectric slab is 9.6. The two-dimensional solution for this
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Fig. 6. Coupled microstrips between parallel conducting planes.

TABLE III
COMPARISON OF RESULTS FOR FIG. 6

veeks [17] Wei et a1 [3] Our Program
¢y 0.6307 x 10710 0.6233 x 10710 0.6509 = 10710
¢y -0.5866 x 10711 -0.5931 x 10711 -0.5777 x 1071}
Gy -0.5866 x 107} -0.5931 x 10711 -0.5783 x 1071}
Cp 0.6307 x 10~ X0 0.6233 x 10710 0.6516 x 10710

L.
‘Oiw  .oqm 0!
| A L
1 -
01w €,=296

. 4 4
V AR S S ey S A Sy S A S Ry S A S SR SR A |

Fig. 7. A parallel strip transmission line over a dielectric slab mounted
on a ground plane.

problem was reported by Bryant and Weiss [19]. For the
three-dimensional solution of this problem, we take each

strip to be 1.0 m long and model by utilizing 16 triangular

patches. The two dielectric layers at the end of the strip-
lines are each 10 m long and 0.3 m wide and are modeled
by 16 triangular patches each. The dielectric section be-

tween the two conductors is 0.04 m wide and 1.0 m long, -

and also modeled by 16 triangular patches. The even-mode
and odd-mode impedances Z,, and Z,, for our case are
140.25 and 80.40 Q, respectively, whereas the two-dimen-
sional solution yields 141.2 and 77.25 2, respectively [19].
Again, satisfactory agreement is evident in these two solu-
tions.

V1. DiscUsSION AND CONCLUSION

The integral equations (9) and (11) for the total charge at
the surfaces of conductors embedded in multiple dielectric
regions and on the dielectric-to-dielectric interfaces are
simple in concept. The solution obtained by the method of
moments using a piecewise constant for expansion and
point matching for testing is also simple. Experience has
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shown that this type of solution is both versatile and
accurate. Improvement in the rate of convergence might be
obtained by using better-behaved functions for expansion
and testing, but at the cost of considerable complication.

The solution presented is valid for an arbitrary number
of conductors of finite volume embedded in an arbitrary
number of dielectrics. The solution is also valid, even if the
conductors become of zero thickness.

For the numerical examples, we have compared the
inductance and capacitance matrices of a finite-length
transmission line with that of an infinitely long transmis-
sion line. However, this analysis is more general and can be
used to compute equivalent circuits of microstrip junctions
and discontinuities and for vias connecting signal conduc-
tors.

Even though the method is designed for general geome-
tries, its application seems rather restricted for complex
configurations, due to solutions of large matrix equations.
However, if one applied the conjugate gradient method
[20], [21] directly on the operator equations (9) and (11),
then one needs only 5N storage locations as opposed to N2
for conventional matrix methods.
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